Predicting Locations in Tweets
نویسندگان
چکیده
Five hundred millions of tweets are posted daily, making Twitter a major social media from which topical information on events can be extracted. Events are represented by time, location and entityrelated information. This paper focuses on location which is an important clue for both users and geo-spatial applications. We address the problem of predicting whether a tweet contains a location or not, as location prediction is a useful pre-processing step for location extraction, by defining a number of features to represent tweets and conducting intensive evaluation of machine learning parameters. We found that: (1) not only words appearing in a geography gazetteer are important but the occurrence of a preposition right before a proper noun also is. (2) it is possible to improve precision on location extraction if the occurrence of a location is predicted.
منابع مشابه
Detection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets
Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...
متن کاملDetection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets
Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...
متن کاملMultiple Location Profiling for Users and Relationships from Social Network and Content
Users’ locations are important for many applications such as personalized search and localized content delivery. In this paper, we study the problem of profiling Twitter users’ locations with their following network and tweets. We propose a multiple location profiling model (MLP), which has three key features: 1) it formally models how likely a user follows another user given their locations an...
متن کاملWhen twitter meets foursquare: tweet location prediction using foursquare
The continued explosion of Twitter data has opened doors for many applications, such as location-based advertisement and entertainment using smartphones. Unfortunately, only about 0.58 percent of tweets are geo-tagged to date. To tackle the location sparseness problem, this paper presents a methodical approach to increasing the number of geotagged tweets by predicting the fine-grained location ...
متن کاملWhere Is This Tweet From? Inferring Home Locations of Twitter Users
We present a new algorithm for inferring the home locations of Twitter users at different granularities, such as city, state, or time zone, using the content of their tweets and their tweeting behavior. Unlike existing approaches, our algo rithm uses an ensemble of statistical and heuristic classifiers to predict locations. We find that a hierarchical classifica tion approach can improve predic...
متن کامل